JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 34, No. 2, May 2021 http://dx.doi.org/10.14403/jcms.2021.34.2.119

ON GENERALIZED RIGHT f-DERIVATIONS OF Γ -INCLINE ALGEBRAS

Kyung Ho Kim

ABSTRACT. In this paper, we introduce the concept of a generalized right f-derivation associated with a derivation d and a function f in Γ -incline algebras and give some properties of Γ -incline algebras. Also, the concept of d-ideal is introduced in a Γ -incline algebra with respect to right f-derivations.

1. Introduction

Incline algebra is a generalization of both Boolean and fuzzy algebra and it is a special type of semiring. It has both a semiring structure and a poset structure. It can also be used to represent automata and other mathematical systems, to study inequalities for non-negative matrices of polynomials. Z. Q. Cao, K. H. Kim and F. W. Roush [4] introduced the notion of incline algebras in their book and later it was developed by some authors [1, 2, 3, 5]. Ahn et al [1] introduced the notion of quotient incline and obtained the structure of incline algebras. N. O. Alshehri [3] introduced the notion of derivation in incline algebra. Kim[5, 6]studied right derivation and generalized derivation of incline algebras and obtained some results. M. K. Rao etc introduced the concept of generalized right derivation of Γ -incline and obtain some results. In this paper, we introduce the concept of a generalized right f-derivation in Γ -incline algebras and give some properties of Γ -incline algebras. Also, the concept of *d*-ideal is introduced in a Γ -incline algebra with respect to right f-derivations.

Received April 27, 2021; Accepted May 08, 2021.

²⁰¹⁰ Mathematics Subject Classification: Primary 16Y30, 03G25.

Key words and phrases: Incline algebra, Γ -incline algebra, generalized right f-derivation, idempotent, isotone, d-ideal, k-ideal.

2. Preliminaries

An *incline algebra* is a set K with two binary operations denoted by "+" and "*" satisfying the following axioms, for all $x, y, z \in K$,

 $\begin{array}{ll} ({\rm K1}) \ x+y=y+x, \\ ({\rm K2}) \ x+(y+z)=(x+y)+z, \\ ({\rm K3}) \ x*(y*z)=(x*y)*z, \\ ({\rm K4}) \ x*(y+z)=(x*y)+(x*z), \\ ({\rm K5}) \ (y+z)*x=(y*x)+(z*x), \\ ({\rm K5}) \ (y+z)*x=x, \\ ({\rm K7}) \ x+(x*y)=x, \\ ({\rm K8}) \ y+(x*y)=y, \\ {\rm for \ all} \ x,y,z\in K. \end{array}$

DEFINITION 2.1. Let (K, +) and $(\Gamma, +)$ be commutative semigroups. If there exists a mapping $K \times \Gamma \times K \to K((x, \alpha, y) = x\alpha y)$ such that it satisfies the following axioms, for all $x, y \in K$ and $\alpha, \beta \in \Gamma$,

- (K9) $x\alpha(y+z) = x\alpha y + x\alpha z$
- $(K10) (x+y)\alpha z = x\alpha z + y\alpha z$
- (K11) $x(\alpha + \beta)y = x\alpha y + x\beta y$
- (K12) $x\alpha(y\beta z) = (x\alpha y)\beta z$
- $(K13) \quad x + x = x$
- $(K14) \ x + x\alpha y = x$
- (K15) $y + x\alpha y = y$

Then K is called a Γ -incline algebra(see[7]).

EXAMPLE 2.2. Let K = [0, 1] and $\Gamma = N$. Define + by $x + y = \max\{x, y\}$ and ternary operation is defined as $x\alpha y = \min\{x, \alpha, y\}$ for all $x, y \in K$ and $\alpha \in \Gamma$. Then K is a Γ -incline algebra(see [7]).

Note that $x \leq y \Leftrightarrow x + y = y$ for all $x, y \in K$. It is easy to see that " \leq " is a partial order on K and that for any $x, y \in K$, the element x + y is the least upper bound of $\{x, y\}$. We say that \leq is induced by operation +.

In a Γ -incline algebra K, the following properties hold.

- (K16) $x\alpha y \leq x$ and $y\alpha x \leq x$ for all $x, y \in K$ and $\alpha \in \Gamma$
- (K17) $y \leq z$ implies $x\alpha y \leq x\alpha z$ and $y\alpha x \leq z\alpha x$, for all $x, y, z \in K$ and $\alpha \in \Gamma$
- (K18) If $x \leq y$ and $a \leq b$, then $x + a \leq y + b$, and $x\alpha \leq y\alpha b$ for all $x, y, a, b \in K$ and $\alpha \in \Gamma$.

Furthermore, a Γ -incline algebra K is said to be *commutative* if $x\alpha y = y\alpha x$ for all $x, y \in K$ for all $\alpha \in \Gamma$.

A Γ -subincline of a Γ -incline algebra K is a non-empty subset I of Kwhich is closed under the addition and multiplication. A Γ -subincline I is called an *ideal* if $x \in I$ and $y \leq x$ then $y \in I$. An element "0" in an Γ -incline algebra K is a zero element if x + 0 = x = 0 + x and $x\alpha 0 = 0 = 0\alpha x$ for any $x \in K$ and $\alpha \in \Gamma$. An non-zero element "1" is called a *multiplicative identity* if $x\alpha 1 = 1\alpha x = x$ for any $x \in K$ and $\alpha \in \Gamma$. A non-zero element $a \in K$ is said to be a *left* (resp. *right*) zero divisor if there exists a non-zero $b \in K$ such hat $a\alpha b = 0$ (resp. $b\alpha a = 0$) for all $\alpha \in \Gamma$. A zero divisor is an element of K which is both a left zero divisor and a right zero divisor. An incline algebra K with multiplicative identity 1 and zero element 0 is called an *integral incline* if it has no zero divisors. By a homomorphism of Γ -incline algebras, we mean a mapping f from a Γ -incline algebra K into a Γ -incline algebra L such that f(x + y) = f(x) + f(y) and $f(x\alpha y) = f(x)\alpha f(y)$ for all $x, y \in K$ for all $\alpha \in \Gamma$.

DEFINITION 2.3. Let K be a Γ -incline algebra. An element $a \in K$ is said to be *idempotent* of K if there exists $\alpha \in \Gamma$ such that $a = a\alpha a$.

Let K be a Γ -incline algebra. If every element of K is idempotent, then K is said to be *idempotent* Γ -*incline algebra*. A Γ -incline algebra K with unity 1 and zero element 0 is called an *integral* Γ -*incline* if it has no zero divisors.

DEFINITION 2.4. Let K be a Γ -incline algebra. By a right derivation of K, we mean a self map d of K satisfying the identities

d(x+y) = d(x) + d(y) and $d(x\alpha y) = (d(x)\alpha y) + (d(y)\alpha x)$

for all $x, y \in K$ and $\alpha \in \Gamma$.

3. Generalized right f-derivations of Γ -incline algebras

In what follows, let K denote a Γ -incline algebra with a zero-element unless otherwise specified.

DEFINITION 3.1. Let K be a Γ -incline algebra. A mapping $D: K \to K$ is called a *generalized right f-derivation* of K if there exists a right derivation d and a function f of K such that

$$D(x+y) = D(x) + D(y)$$
 and $D(x\alpha y) = (D(x)\alpha f(y)) + (d(y)\alpha f(x))$

for all $x, y \in K$ and $\alpha \in \Gamma$.

EXAMPLE 3.2. Let $K = \{0, a, b, 1\}$ be a set in which "+" and " α " is defined by

+	0	a	b	1	α	0	a	b	1
0					0	0	0	0	0
a	a	a	b	1	a	0	a	a	a
		b			b	0	a	b	b
1	1	1	1	1	1	0	a	b	1

Then it is easy to check that $(K, +, \alpha)$ is a Γ -incline algebra. Define a map $d: K \to K$ by

$$d(x) = \begin{cases} a & \text{if } x = a, b, 1\\ 0 & \text{if } x = 0 \end{cases}$$

and define a function $f:K\to K$ by

$$f(x) = \begin{cases} a & \text{if } x = b \\ b & \text{if } x = a \\ 1 & \text{if } x = 1 \\ 0 & \text{if } x = 0. \end{cases}$$

Also, define a map $D: K \to K$ by

$$D(x) = \begin{cases} a & \text{if } x = a, b \\ 1 & \text{if } x = 1 \\ 0 & \text{if } x = 0. \end{cases}$$

Then we can see that D is a generalized right f-derivation associated with a derivation d and a function f of K.

PROPOSITION 3.3. Let K be a Γ -incline algebra and let D be a generalized f derivation associated with a derivation d and a function f of K. Then the following conditions hold for all $x, y \in K$ and $\alpha \in \Gamma$.

- (1) If K is idempotent, then $d(x) \leq D(x) \leq x$ for all $x \in K$
- (2) $D(x\alpha y) \le D(x) + d(y)$
- (3) If $x \leq y$ and f is an order preserving mapping, then $D(x\alpha y) \leq f(y)$.

Proof. (1) Let D be a generalized right f derivation associated with a derivation d and a function f of K. If K is idempotent, then we get $D(x) = D(x\alpha x) = (D(x)\alpha x) + (d(x)\alpha x) \le d(x)\alpha f(x) \le d(x)$ for all $x, y \in K$ and $\alpha \in \Gamma$. (2) Let $x, y \in K$ and $\alpha \in \Gamma$. Then we have

 $D(x)\alpha(y) \leq D(x)$ and $d(y)\alpha f(x) \leq d(y)$. Hence $D(x\alpha y) = D(x)\alpha f(y) + d(y)\alpha f(x) \leq D(x) + d(y)$. So, we find $D(x\alpha y) \leq D(x) + d(y)$. Also, since $D(x) = D(x\alpha x) = D(x)\alpha x + d(x)\alpha x$, we get from (K15) and (K16),

$$D(x) + x = ((D(x)\alpha x) + (d(x)\alpha x)) + x$$

= $(D(x)\alpha x) + (x + d(x)\alpha x)$
= $(D(x)\alpha x) + x = x + (D(x)\alpha x)$
= x

which implies $D(x) \leq x$ for all $x \in K$ and $\alpha \in \Gamma$. (3) Let $x \leq y$ and let f be an order preserving mapping. Then we by using (K16) and (K18), we have $d(y)\alpha f(x) \leq d(y)\alpha f(y) \leq f(y)$. Similarly, we get $D(x)\alpha f(y) \leq f(y)$. Then we obtain $D(x\alpha y) = (D(x)\alpha f(y)) + (d(y)\alpha f(x)) \leq f(y) + f(y) = f(y)$ for all $\alpha \in \Gamma$. Hence we have $D(x\alpha y) \leq f(y)$.

PROPOSITION 3.4. Let D be a generalized right f-derivation associated with a derivation d and a function f of K. If f(0) = 0, then we have D(0) = 0.

Proof. Let D be a generalized right f-derivation associated with a derivation d and a function f of K Then we have for all $\alpha \in \Gamma$,

$$D(0) = D(0\alpha 0) = D(0)\alpha f(0) + d(0)\alpha f(0)$$

= $D(0)\alpha 0 + d(0)\alpha 0 = 0 + 0$
= 0.

PROPOSITION 3.5. Let D be a generalized right f-derivation associated with a derivation d and a function f of K. If K is idempotent, then $D(x) \leq f(x)$ for all $x \in K$.

Proof. Let D be a generalized right f-derivation associated with a derivation d and a function f of K. If K is idempotent, then

$$D(x) = D(x\alpha x) = D(x)\alpha f(x) + d(x)\alpha f(x)$$

$$\leq f(x) + f(x) = f(x)$$

from (K9) for all $x \in K$ and $\alpha \in \Gamma$.

PROPOSITION 3.6. Let K be an incline algebra and let D be a generalized right f-derivation associated with a derivation d and a function f of K. Then for all $x, y \in K$ and $\alpha \in \Gamma$, $D(x\alpha y) \leq D(x)$ and $D(x\alpha y) \leq D(y)$.

Proof. Let $x, y \in K$ and $\alpha \in \Gamma$, Then by using (K14), we obtain

$$D(x) = D(x + x\alpha y) = D(x) + D(x\alpha y).$$

Hence we get $D(x\alpha y) \leq D(x)$. Also, $D(y) = D(y + (x\alpha y)) = D(y) + D(x\alpha y)$, and so $D(x\alpha y) \leq D(y)$.

PROPOSITION 3.7. Let K be an incline algebra. A mapping $D: K \to K$ is isotone if $x \leq y$ implies $D(x) \leq D(y)$ for all $x, y \in K$.

PROPOSITION 3.8. Let D be a generalized right f-derivation associated with a derivation d and a function f of K. Then D is isotone.

Proof. Let $x, y \in K$ be such that $x \leq y$. Then x + y = y. Hence we have D(y) = D(x+y) = D(x) + D(y), which implies $D(x) \leq D(y)$. This completes the proof.

PROPOSITION 3.9. Let K is an Γ -incline algebra. Then a sum of two generalized f-right derivations associated with a function f of K is again a generalized right f-derivation associated with a function f of K.

Proof. Let D_1 and D_2 be two generalized right *f*-derivations associated with derivations d_1 and d_2 , respectively. Then we have for all $a, b \in K$ and $\alpha \in \Gamma$,

$$(D_1 + D_2)(a\alpha b) = D_1(a\alpha b) + D_2(a\alpha b)$$

= $D_1(a)\alpha f(b) + d_1(b)\alpha f(a) + D_2(a)\alpha f(b) + d_2(b)\alpha f(a)$
= $D_1(a)\alpha f(b) + D_2(a)\alpha f(b) + d_1(b)\alpha f(a) + d_2(b)\alpha f(a)$
= $(D_1 + D_2)(a)\alpha f(b) + (d_1 + d_2)(b)\alpha f(a).$

Clearly, $(D_1 + D_2)(a + b) = (D_1 + D_2)(a) + (D_1 + D_2)(b)$ for all $a, b \in K$ and $\alpha \in \Gamma$. This completes the proof.

PROPOSITION 3.10. Let K be an integral Γ -incline and let D be a generalized right f-derivation associated with a derivation d and a function f of K. If f(1) = 1 and $a \in K$, then $a\alpha D(x) = 0$ implies a = 0or d = 0 for all $a \in K$ and $\alpha \in \Gamma$.

Proof. Let $a\alpha D(x) = 0$ for all $x \in K$ and $\alpha \in \Gamma$. Putting x on $x\alpha y$, for all $y \in K$, we get

$$D = a\alpha D(x) = a\alpha D(x\alpha y)$$

= $a\alpha [(D(x)\alpha f(y)) + (d(y)\alpha f(x))]$
= $(a\alpha (D(x)\alpha f(y)) + (a\alpha (d(y)\alpha f(x))))$
= $a\alpha (d(y)\alpha f(x)).$

In this equation, by taking x = 1, we have $a\alpha d(y) = 0$ for any $y \in K$. Since K is an integral Γ -incline algebra, we have a = 0 or d = 0.

THEOREM 3.11. Let I be a nonzero ideal of integral Γ -incline K and let D be a nonzero generalized right f-derivation associated with a nonzero derivation d and a function f of K. Then D is nonzero on I.

Proof. Suppose that D is a nonzero generalized right f-derivation of K associated with a nonzero derivation d and a function f of K but D is zero generalized right f-derivation on I. Let $x \in I$. Then we have D(x) = 0. Let $y \in K$. Then by (K16), we get $x\alpha y \leq x$ for all $\alpha \in \Gamma$. Since I is an ideal of K, we have $x\alpha y \in L$. Hence $D(x\alpha y) = 0$, which implies

$$0 = D(x\alpha y) = (D(x)\alpha f(y)) + (d(y)\alpha f(x)) = d(y)\alpha f(x).$$

By hypothesis, K has no zero divisors. Hence f(x) = 0 for all $x \in I$ or d(y) = 0 for all $y \in K$. Since f is a nonzero function of K, we get d(y) = 0 for all $y \in K$. This contradicts with our assumption that is d is a nonzero derivation on K. Hence D is nonzero on I.

THEOREM 3.12. Let I be a nonzero ideal of integral Γ -incline K and let D be a nonzero generalized right f-derivation associated with a nonzero derivation d and a function f of K. Then D is nonzero on I. If $a\alpha D(x) = 0$ for $a \in K$ and $\alpha \in \Gamma$, then a = 0.

Proof. By Theorem 3.11, we know that there exists $m \in I$ such that $D(m) \neq 0$. Let I be a Let $a\alpha D(I) = 0$ $a \in K$ and $\alpha \in \Gamma$. Then for $m, n \in I$ we can write

$$0 = a\alpha D(m\alpha n)$$

= $a\alpha (D(m)\alpha f(n) + d(n)\alpha f(m))$
= $a\alpha D(m)\alpha f(n) + a\alpha d(n)\alpha f(m)$
= $a\alpha d(n)\alpha f(m)$.

Since K is an integral Γ -incline algebra and let d is a nonzero right f-derivation of K and f is a nonzero function on I, we get a = 0.

THEOREM 3.13. Let K be a Γ -incline with a multiplicative identity element and let D be a generalized right f-derivation associated with a derivation d and a function f of K. If f(1) = 1, then we have $D(x) = D(1)\alpha f(x) + d(x)$ for all $x \in K$.

Proof. Since $D(x) = D(1\alpha x) = (D(1)\alpha f(x)) + (d(x)\alpha f(1)$ for all $x \in K$ and by using f(1) = 1, we have $D(x) = (D(1)\alpha f(x)) + d(x)$.

DEFINITION 3.14. Let K be a Γ -incline algebra and let d be a nontrivial generalized right f-derivation associated with a derivation d and a function f of K. An ideal I of K is called a d-ideal if d(I) = I.

Since d(0) = 0, it can be easily observed that the zero ideal $\{0\}$ is a *d*-ideal of *K*. If *d* is onto, then d(K) = K, which implies *K* is a *d*-ideal of *K*.

EXAMPLE 3.15. In Example 3.2, let $I = \{0, a\}$. Then I is an ideal of K. It can be verified that d(I) = I. Therefore, I is a d-ideal of K.

LEMMA 3.16. Let d be a generalized right f-derivation associated with a derivation d and a function f of K and let I, J be any two dideals of K. Then we have $I \subseteq J$ implies $d(I) \subseteq d(J)$.

Proof. Let $I \subseteq J$ and $x \in d(I)$. Then we have x = d(y) for some $y \in I \subseteq J$. Hence we get $x = d(y) \in d(J)$. Therefore, $d(I) \subseteq d(J)$. \Box

PROPOSITION 3.17. Let K be a Γ -incline algebra. Then, a sum of any two d-ideals is also a d-ideal of K.

Proof. Let I and J be d-ideals of K. Then I + J = d(I) + d(J) = d(I + J). Hence I + J is a d-ideal of K.

Let d be a generalized right f-derivation associated with a derivation d and a function f of K. Define a set Kerd by

$$Kerd := \{x \in K \mid d(x) = 0\}$$

for all $x \in K$.

PROPOSITION 3.18. Let d be a generalized right f-derivation associated with a derivation d and a function f of K. Then Kerd is a subincline of K.

Proof. Let
$$x, y \in Kerd$$
. Then $d(x) = 0, d(y) = 0$ and
 $d(x\alpha y) = (d(x)\alpha f(y)) + (d(y)\alpha f(x))$
 $= (0\alpha f(y)) + (0\alpha f(x))$
 $= 0 + 0 = 0,$

and

$$d(x + y) = d(x) + d(y)$$

= 0 + 0 = 0.

Therefore, $x\alpha y, x + y \in Kerd$. This completes the proof.

PROPOSITION 3.19. Let d be a generalized right f-derivation associated with a derivation d and a function f of an integral Γ -incline algebra K. If f is an one to one function, then Kerd is an ideal of K.

Proof. By Proposition 3.18, *Kerd* is a subincline of *K*. Now let $x \in K$ and $y \in Kerd$ such that $x \leq y$. Then d(y) = 0 and

$$0 = d(y) = d(y + x\alpha y) = d(y) + d(x\alpha y) = 0 + d(x\alpha y),$$

which $d(x\alpha y) = 0$. Hence we have

$$0 = d(x\alpha y) = (d(x)\alpha f(y)) + (d(y)\alpha f(x)) = d(x)\alpha f(y).$$

Since K has no zero divisors, either d(x) = 0 or f(y) = 0. If d(x) = 0, then $x \in Kerd$. If f(y) = 0, then y = 0 and so $x \leq y = 0$, i.e., x = 0, which implies $x \in Kerd$.

Let d be a generalized right f-derivation associated with a derivation d and a function f of K. Define a set $Fix_d(K)$ by

$$Fix_d(K) := \{x \in K \mid d(x) = f(x)\}$$

for all $x \in K$.

PROPOSITION 3.20. Let K be a commutative Γ -incline algebra and let d be a generalized right f-derivation associated with a derivation d and a function f of K. Then $Fix_d(K)$ is a subincline of K.

Proof. Let $x, y \in Fix_d(K)$. Then we have d(x) = f(x) and d(y) = f(y), and so

$$d(x\alpha y) = d(x)\alpha f(y) + d(y)\alpha f(x) = f(x)\alpha f(y) + f(y)\alpha f(x)$$

= $f(x)\alpha f(y) + f(x)\alpha f(y) = f(x)\alpha f(y) = f(x\alpha y).$

Now

$$d(x + y) = d(x) + d(y) = f(x) + f(y) = f(x + y),$$

which implies $x + y, x\alpha y \in Fix_d(K)$. This completes the proof. \Box

DEFINITION 3.21. Let K be an Γ -incline algebra. An element $a \in K$ is said to be *additively left cancellative* if for all $a, b \in K$, $a+b=a+c \Rightarrow b=c$. An element $a \in K$ is said to be *additively right cancellative* if for all $a, b \in K$, $b+a=c+a \Rightarrow b=c$. It is said to be *additively cancellative* if

127

it is both left and right cancellative. If every element of K is additively left cancellative, it is said to be *additively left cancellative*. If every element of K is additively right cancellative, it is said to be *additively right cancellative*.

DEFINITION 3.22. A subincline I of an Γ -incline algebra K is called a k-ideal if $x + y \in I$ and $y \in I$, then $x \in I$.

EXAMPLE 3.23. In Example 3.2, $I = \{0, a, b\}$ is an k-ideal of K.

THEOREM 3.24. Let K be a commutative Γ -incline algebra and additively right cancellative. If d is a generalized right f-derivation associated with a derivation d and a function f of K, then $Fix_d(K)$ is a k-ideal of K.

Proof. By Proposition 3.20, $Fix_d(K)$ is a subincline of K. Let $x + y, y \in Fix_d(K)$. Then d(y) = f(y) and f(x + y) = d(x + y). Hence f(x) + f(y) = d(x + y) = d(x) + d(y) = d(x) + f(y), which implies $x \in Fix_d(K)$. Hence $Fix_d(K)$ is a k-ideal of K.

PROPOSITION 3.25. Let K be an Γ -incline algebra and let d be a generalized right f-derivation associated with a derivation d and a function f of K. Then Kerd is a k-ideal of K.

Proof. From Proposition 3.18, Kerd is a subincline of K. Let $x + y \in K$ and $y \in Kerd$. Then we have d(x + y) = 0 and d(y) = 0, and so

$$0 = d(x + y) = d(x) + d(y) = d(x) + 0 = d(x).$$

This implies $x \in Kerd$.

References

- S. S. Ahn, Y. B. Jun and H. S. Kim, *Ideals and quotients of incline algebras*, Commun. Korean Math. Soc., 16 (2001), 573-583.
- [2] S. S. Ahn and H. S. Kim, On r-ideals in incline algebras, Commun. Korean Math. Soc., 17 (2002), 229-235.
- [3] N. O. Alshehri. On derivations of incline algebras, Sci. Math. Jpn. online, e-2010 (2010), 199-205.
- [4] Z. Q. Cao, K. H. Kim and F. W. Roush, Incline algebra and applications, John Wiley and Sons, New York, 1984.
- [5] K. H. Kim On right derivations of incline algebras, J. Chungcheong Math Soc., 26 (2013), 683-690.
- [6] K. H. Kim, On generalized right derivations of incline algebras, Gulf J. Math., 3 (2015), 127-132.

- [7] M. M. K. Rao and B. Venkateswarlu, On generalized right derivations of Γincline, J. Int. Math. Virtual Inst., 6 (2016), 31-47.
- [8] W. Yao and S. Han, On ideals, filters and congruences in inclines, Bull. Korean Math., 46 (2009), no. 3, 591-598.

Department of Mathematics, Korea National University of Transportation Chungju 27469, Republic of Korea *E-mail*: ghkim@ut.ac.kr